

2013 WMI Competition Grade 8 Part 1 Logical Reasoning Test

Problems 1–30: 5 points each for a total of 150 points.

1. Compute
$$500 \times 499 \times (\frac{499}{500} - \frac{500}{499})$$
.

$$(A) - 1999$$

$$(B) - 1111$$

(A)
$$-1999$$
 (B) -1111 (C) -1001 (D) -999

$$(D) - 999$$

2. If $kx^3 + kx^2 + k + 5x^3 + 2x^2 + 4$ is a second degree polynomial of x, then what must it be?

(A)
$$7x^2 - 1$$

(B)
$$-3x^2-1$$
 (C) $2x^2-3$

$$(C)2x^2-3$$

(D)
$$x^2 + 2$$

3. Which one of the following is an arithmetic (equal difference) series (progression)?

(B)
$$\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}$$

(B)
$$\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}$$

(D) $\frac{13}{8} + \frac{5}{4} + \frac{7}{8} + \frac{1}{2} + \frac{1}{8}$

4. Compute $\sqrt{23\frac{1}{25}} - \sqrt{\frac{147}{75}} - \sqrt{19.36} = ?$

$$(A) - 1$$

$$(B) - 1.2$$

$$(C) - 2$$

$$(D) - 2.4$$

5. Roll triangle with length 6 to the right along a straight line as shown in the right figure until vertex B lands on the line again. From the beginning to the end, how far has vertex *B* traveled?

 $(A)4\pi$

 $(B)8\pi$

 $(C)9\pi$

(D) $4\pi + 12$

6. Suppose $(1+\sqrt{3}-\sqrt{5})(1-\sqrt{3}+\sqrt{5})=a+b\sqrt{c}$ with integer a, even number b, and two-digit positive integer c. Then a+b+c=?

(A)6

- (B) 10
- (C)24
- (D)54

7.	It is given that the three heights of a right triangle are <i>x</i> , 7, and 24 with heights 7 and 24 perpendicular to each other. Which one of the following choices is correct?				
	(A) 6 < x < 7	(B) $7 < x < 8$	(C) $8 < x < 9$	(D) $9 < x < 10$	
	1	4 2 2			

8. If
$$x = \frac{1}{\sqrt{2} + 1}$$
, then $x^4 + 2x^3 - x^2 + x + 1 - ?$
(A) $\sqrt{2}$ (B) $\sqrt{2} - 1$ (C) $\sqrt{3}$ (D) $\sqrt{3} - 1$

9. Let
$$a$$
 and b be the roots of equation $x^2 + 2x - 1699$. Then $\left| \frac{2}{5}a - \frac{2}{5}b \right| = ?$
(A) $8\sqrt{|3|}$ (B) $\left| 0\sqrt{7} \right|$ (C) $8\sqrt{|7|}$ (D) $9\sqrt{|4|}$

13. If P(x, y) is the symmetric image of Q(3, 3) using the y-axis as axis of symmetry on the xy-coordinate plane, then 2x - y = ?

$$(A)-3$$
 $(B)-9$ $(C)3$ $(D)9$

14. Given $\angle AOB = 60^{\circ}$, AO = 8 cm, and BO = | 2 cm. Based on these conditions, which one of the following cannot be constructed using a ruler and compass.

(A) 3cm line segment (B) 15° angle (C) 20° angle (D) 2cm line segment

(A) 24.25 (B) 25.75

(A)∆DEF

(C)26.25

(D)26.75

- is correct? (A)a=2c
- (B)b-a=c
- (C)a+c>b
- (D) a+c < b
- 18. Consider the figure on the right. If L // M, then $\angle 1 + \angle 2 = ?$
 - (A) 126°
- (B) 128°
- (C) 130°
- (D) 132°

- 19. Let point O be an interior point, not on the diagonals, of quadrilateral ABCD. If the Areas of $\triangle OAB$, $\triangle OBC$, and $\triangle OCD$ are 23, 21, and 27, respectively, what is the area of $\triangle OAD$?
 - (A)25
- (B) 27
- (C)28
- (D)29
- 20. Consider the isosceles trapezoid ABCD as shown on the right figure. If AD//BC, AB = CD, AD = 10, BC = 22, and the trapezoid's height $\overline{AH} = 12$, then the length of the diagonal $\overline{AC} = ?$

- (A) 16
- (B) 18
- (C)20
- (D)22
- where p and q and p > q, what is the smallest possible 21. If $(p+q)^2 - (p-q)^2 > 37$ value for *p*?
 - (A) 4
- (B)5
- (C)6
- (D)7
- 22. The figure on the right is a calendar that shows the month of September. Suppose a, b, and c are three consecutive dates for extra-curriculum activities. If $a^2 + b^2 + c^2 = 974$, then which date of the week it is on October 15?

- (A) Sunday
- (B) Monday
- (C) Tuesday
- (D) Wednesday
- 23. If x-2 is a factor for both $5x^2-11x+a$ and x^2+bx-2 , then a-b=?
 - (A)2
- (B) 3
- (C) 4
- (D)6

29. If a, b, and c are the sides of $\triangle ABC$, then

$$\sqrt{(a+b-c)^2} + \sqrt{(c-a-b)^2} - \sqrt{(a-b-c)^2} = ?$$
(A) $a-b-c$ (B) $a+3b-c$ (C) $-a+b+c$ (D) $3a+b-3c$

30. Eight people with their last names started in "A, B, C, D, E, F, G, H" are lined up in a row in alphabetical order. A said, "I am 10 years old this year." H said, "I am 52 years old this year." The middle 6 people said, at the same time, "My age is 2 times the sum of the ages of the two persons next to me." Four mathematical statements are made under these conditions.

- 1. The ages of these 8 people, in order, form an arithmetic (equal difference) sequence.
- 2. E's age is 34.
- 3. There are a total of 8 terms in this arithmetic sequence.
- 4. Since the ages of these 8 people form an arithmetic sequence, the sum of ages of A, C, E, and G is the same as the sum of ages of B, D, F, and H.
- (A) Only Statements (1), (2), and (3) are correct.
- (B) Only Statements (1), (3), and (4) are correct.
- (C) All 4 Statements are correct.
- (D) None of the Statements are correct.

